Breaking apart ionic compounds into ions

All ionic compounds can be broken up into cations (-) and anions (+)
The charge of the compound is neutral unless stated otherwise:

```
NaCl = neutral
HCO_ = = negative charge (-1)
```

The coefficients and subscript numbers need to be taken into account:
$2 \mathrm{CaCl}_{2}=2 \mathrm{Ca}$ ions and 4 Cl ions
$\mathrm{Al}_{2} \mathrm{O}_{3}=2 \mathrm{Al}$ ions and 3 O ions
$3 \mathrm{Mg}(\mathrm{OH})_{2}=3 \mathrm{Mg}$ ions and 6 OH ions (3x2)

Ionic compound	Anion	Cation	Net charge
CaBr_{2}	$2 \mathrm{Br}^{-}(-1$ as halogen)	Ca^{2+} (+2 as group 2)	$2 x(-1)+(+2)=0$
NiF_{3}	$3 \mathrm{~F}^{-}$(-1 as halogen)	Ni^{3+} (needs to be +3 for net charge to be 0)	$3 x(-1)+(+3)=0$
$\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	$2 \mathrm{PO}_{4}{ }^{3-}$ (phosphate ion is always -3)	$3 \mathrm{Ba}^{2+}(+2$ as group 2)	$2 x(-3)+3 x(+2)=0$
ZnSO_{4}	$\mathrm{SO}_{4}{ }^{2-}\left(\mathrm{SO}_{4}\right.$ is always -2)	Zn^{2+} (needs to be +2 for net charge to be 0)	$(+2)+(-2)=0$
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	$2 \mathrm{NO}_{3}{ }^{-}$(nitrate ion is always -1)	Ca^{2+} (+2 as group 2)	$2 x(-1)+(+2)=0$
$\mathrm{K}_{3} \mathrm{~N}$	N^{3-} (nitride ions is always -3)	$3 \mathrm{~K}^{+}(+1$ as group 1)	$(-3)+3 x(+1)=0$

The coefficient for each of these ionic compounds is 1 . For the examples below the coefficient is greater than 1 , therefore the number of each ion is different

$2 \mathrm{CaBr}_{2}$	$2 \mathrm{Ca}^{2+}$	$4 \mathrm{Br}^{-}$
$3 \mathrm{NiF}_{3}$	$3 \mathrm{Ni}^{3+}$	$9 \mathrm{~F}^{-}$
$4 \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	$12 \mathrm{Ba}^{2+}$	$8 \mathrm{PO}_{4}{ }^{3-}$
$5 \mathrm{ZnSO}_{4}$	$5 \mathrm{Zn}^{2+}$	$5 \mathrm{SO}_{4}{ }^{2-}$
$6 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	$6 \mathrm{Ca}^{2+}$	$12 \mathrm{NO}_{3}{ }^{-}$
$7 \mathrm{~K}_{3} \mathrm{~N}$	$21 \mathrm{~K}^{+}$	$7 \mathrm{~N}^{3-}$

Notice that for those containing brackets, the coefficient is multiplied by the number after the brackets

$$
\begin{aligned}
& 4 \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}=\mathrm{Ba}:(4 \times 3) \mathrm{PO}_{4}:(4 \times 2) \\
& 6 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}=\mathrm{Ca}:(6 \times 1) \mathrm{NO}_{3}:(6 \times 2)
\end{aligned}
$$

