Breaking apart ionic compounds into ions

All ionic compounds can be broken up into cations (-) and anions (+)

The charge of the compound is neutral unless stated otherwise:

NaCl = neutral

 HCO_3 = negative charge (-1)

The coefficients and subscript numbers need to be taken into account:

 $2 \text{ CaCl}_2 = 2 \text{ Ca ions and } 4 \text{ Cl ions}$

 $Al_2O_3 = 2$ Al ions and 3 O ions

 $3 Mg(OH)_2 = 3 Mg$ ions and 6 OH ions (3x2)

Ionic compound	Anion	Cation	Net charge
CaBr ₂	2 Br⁻ (-1 as halogen)	Ca ²⁺ (+2 as group 2)	2x(-1) + (+2) = 0
NiF₃	3 F⁻ (-1 as halogen)	Ni ³⁺ (needs to be +3	3x(-1) + (+3) = 0
		for net charge to be 0)	
Ba ₃ (PO ₄) ₂	2 PO4 ³⁻ (phosphate ion is always -3)	3 Ba ²⁺ (+2 as group 2)	2x(-3) + 3x(+2) = 0
ZnSO₄	SO4 ²⁻ (SO4 is always -2)	Zn ²⁺ (needs to be +2	(+2) + (-2) = 0
		for net charge to be 0)	
Ca(NO ₃) ₂	2 NO₃ ⁻ (nitrate ion is always -1)	Ca ²⁺ (+2 as group 2)	2x(-1) + (+2) = 0
K₃N	N ³⁻ (nitride ions is	3 K⁺ (+1 as group 1)	(-3) + 3x(+1) = 0
	always -3)		

The coefficient for each of these ionic compounds is 1. For the examples below the coefficient is greater than 1, therefore the number of each ion is different

2 CaBr ₂	2 Ca ²⁺	4 Br⁻
3 NiF₃	3 Ni ³⁺	9 F ⁻
4 Ba ₃ (PO ₄) ₂	12 Ba ²⁺	8 PO ₄ ³⁻
5 ZnSO ₄	5 Zn ²⁺	5 SO4 ²⁻
6 Ca(NO ₃) ₂	6 Ca ²⁺	12 NO ₃ -
7 K₃N	21 K ⁺	7 N ³⁻

Notice that for those containing brackets, the coefficient is multiplied by the number after the brackets

4 Ba₃(PO₄)₂ = Ba: (4x3) PO₄: (4x2)

6 Ca(NO₃)₂ = Ca: (6x1) NO₃: (6x2)