Back Titrations

Usually performed to find the \% purity of an impure substance (x). In each of the following examples substance x is added to an excess quantity of acid. The acid that does not react with substance x is titrated with a bases. We can find the number of moles of substance x that reacted, and therefore, find the mass using the molar mass.

1. 4.06 g of impure magnesium oxide $(\mathrm{MgO}$, molar mass $=40.30)$ was completely dissolved in 100 ml of 2.0 M HCl (in excess). The excess acid required 19.7 ml of 0.20 M NaOH for neutralisation. Calculate the \% purity of the magnesium oxide.

Step 1 - Find the number of moles of acid ($n=c v$)
Moles $\mathrm{HCl}=2 \times 0.100=0.200$ moles
Step 2 - Find the number of moles of base ($n=c v$)
Moles $\mathrm{NaOH}=0.20 \times 0.0197=3.94 \times 10^{-3}$ moles
Step 3 - Find the number of moles of MgO using the excess moles of acid
Excess moles $\mathrm{HCl}=0.200-\left(3.94 \times 10^{-3} \times \frac{1}{1}\right)=0.196$ moles $(\mathrm{HCl} \mathrm{1:1} \mathrm{NaOH})$
Moles of MgO :
$\mathrm{MgO}+\mathbf{2 H C l} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
$0.196 \times \frac{1}{2}=0.098$ moles
Half as many moles of MgO are needed to neutralise the acid
Step 4 - Calculate the mass of MgO using the molar mass
0.098 moles $\times 40.30=3.95 \mathrm{~g}$

Step 5 - Calculate the \% purity
$(3.95 / 4.06) \times 100=97.3 \%$
2. 150 ml of 0.2105 M nitric acid $\left(\mathrm{HNO}_{3}\right)$ was added to $1.3415 \mathrm{~g} \mathrm{CaCO}_{3}$. The excess acid was back titrated with 0.1055 M NaOH , it required 75.5 ml to reach the end point. Calculate the percentage mass of CaCO_{3} in the sample.

Step 1 - Find the number of moles of acid ($\mathrm{n}=\mathrm{cv}$)
Moles $\mathrm{HNO}_{3}=0.2105 \times 0.150=0.031575$ moles

Step 2 - Find the number of moles of base ($\mathrm{n}=\mathrm{cv}$)
Moles $\mathrm{NaOH}=0.1055 \times 0.0755=7.97 \times 10^{-3}$ moles
Step 3 - Find the moles of CaCO_{3} using the excess moles of acid
Excess moles $\mathrm{HNO}_{3}=0.031575-\left(7.97 \times 10^{-3} \times \frac{1}{1}\right)=0.023605$ moles
Multiplied by 1 over 1 as HNO_{3} and NaOH react 1:1
Moles of CaCO_{3} :
$\mathrm{CaCO}_{3}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$0.023605 \times \frac{1}{2}=0.0118 \mathrm{moles}$
Half as many moles of CaCO_{3} are needed to neutralise the acid

Step 4 - Calculate the mass of CaCO_{3} using the molar mass
0.0118 moles $\times 100.09=1.181 \mathrm{~g}$

Step 5 - Calculate the \% purity
$(1.181 / 1.3415) \times 100=88 \%$
3. 2.76 g sample of dolomite containing CaCO_{3} and MgCO_{3} is dissolved in 80 ml of 1 M HCl solution. The solution is then diluted to 250 ml . 25 ml of this solution requires 20 ml of 0.1 M NaOH solution for complete neutralisation. Calculate the \% composition of the sample. (molar mass of $\mathrm{CaCO}_{3}=100.09$, molar mass of $\mathrm{MgCO}_{3}=84.31$)

Step 1 - Find the number of moles of acid ($\mathrm{n}=\mathrm{cv}$)
Moles $\mathrm{HCl}=1 \times 0.08=0.08$ moles
Step 2 - Find the number of moles of base ($\mathrm{n}=\mathrm{cv}$)
Moles $\mathrm{NaOH}=0.1 \times 0.02=0.002$ moles
In this question 25 ml of the 250 ml solution was titrated with NaOH .
Therefore, (0.002×10) moles of NaOH are needed to neutralise all 250 ml

Step 3 - Find the moles of CaCO_{3} and MgCO_{3} using the excess moles of acid

NaOH and HCl react 1:1
$0.08-\left(0.02 \times \frac{1}{1}\right)=0.06$ moles
The excess moles of acid were neutralised by the CaCO_{3} and MgCO_{3}
$\mathrm{CaCO}_{3}+\mathrm{MgCO}_{3}+4 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{MgCl}_{2}+2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Moles of $\mathrm{CaCO}_{3}=0.06 \times \frac{1}{4}=0.015$ moles
Moles of $\mathrm{MgCO}_{3}=0.06 \times \frac{1}{4}=0.015$ moles

Step 4 - Find grams using molar mass

$\mathrm{CaCO}_{3}=0.015 \times 100.09=1.50 \mathrm{~g}$
$\mathrm{MgCO}_{3}=0.015 \times 84.31=1.26 \mathrm{~g}$

Step 5-\% composition

This questions asks for the \% of each substance
$\mathrm{CaCO}_{3}=(1.50 \mathrm{~g} / 2.76) \times 100=54.35 \%$
$\mathrm{MgCO}_{3}=(1.26 \mathrm{~g} / 2.76) \times 100=45.65 \%$
4. A 1.435 g sample of dry CaCO_{3} and CaCl_{2} mixture was dissolved in 25.00 mL of 0.9892 M HCl solution. What was CaCl_{2} percentage in original sample, if 21.48 mL of 0.09312 M NaOH was used to titrate excess HCl ? (molar mass of $\mathrm{CaCO}_{3}=100.09$, molar mass of $\mathrm{CaCl}_{2}=110.98$)

Step 1 - Find the number of moles of acid ($n=c v$)
Moles $\mathrm{HCl}=0.9892 \times 0.025=0.02473$ moles
Step 2 - Find the number of moles of base ($n=c v$)
Moles of $\mathrm{NaOH}=0.09312 \times 0.02148=0.002$ moles
Step 3 - Find the moles of CaCO_{3} using the excess moles of acid
Excess moles of $\mathrm{HCl}=0.02473-\left(0.002 \times \frac{1}{1}\right)=0.02273$ moles
Multiplied by $\frac{1}{1}$ as NaOH and HCl react 1:1
Moles of CaCO_{3}
$\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$0.02273 \times \frac{1}{2}=0.011365 \mathrm{moles}$
Multiplied by $\frac{1}{2}$ as half as many moles of CaCO_{3} are needed to neutralise the acid
The CaCl_{2} that was originally in the sample does not reacted with the HCl

Step 4 - Calculate the mass of CaCO_{3} to find the mass of CaCl_{2}
Mass of $\mathrm{CaCO}_{3}=0.011365 \times 100.09=1.138$
Mass of $\mathrm{CaCl}_{2}=1.435-1.138=0.297 \mathrm{~g}$

Step 5 - Calculate CaCl_{2} percentage in the original sample
$(0.297 / 1.435) \times 100=20.7 \%$

