QUANTITATIVE CHEMISTRY

QUANTITATIVE CHEMISTRY

It is not practical to quantify on the atomic/molecular level as we cannot see or measure at this scale

MOLES

A mole is the number of atoms in 12 g of Carbon ${ }_{12}$

1 mole of Carbon ${ }_{12}$ has a mass of 12 g . What is the mass of 1 mole of Nitrogen ${ }_{14}$?

Avogadro's Number: 6.02x1023

RELATIVE ATOMIC MASS (\mathbb{A}_{r})

- Because the mass of a single atom is so small, we use scales of relative mass
- The masses of atoms/molecules are compared to the mass of an atom of carbon-12, which has an assigned mass of 12.00
- Units $=$ atomic mass units (amu)

$$
1 \mathrm{amu}=\frac{1}{12} \text { of a carbon }{ }_{12} \text { atom }=1 \mathrm{~g}
$$

Examples	1 Mole
Hydrogen $=\frac{1}{12}$ of a carbon $_{12}$ atom $=1 \mathrm{amu}$	1g
Oxygen $=\frac{16}{12}$ of a carbon $_{12}$ atom $=16 \mathrm{amu}$	16g
Nitrogen $=\frac{14}{12}$ of a carbon $_{12}$ atom $=14 \mathrm{amu}$?
	7

- Isotopes are factored in when assigning an A_{r} value
- Example: Chlorine has 2 isotopes: chlorine ${ }_{35}$ and chlorine ${ }_{37}$
Abundance: 77.35\% 22.65\%

$$
\begin{aligned}
\mathbb{A}_{\mathrm{r}} & =(35 \times 0.7735)+(37 \times 0.2265) \\
& =35.453
\end{aligned}
$$

Calculate the \AA_{r} for Lithium (II). Isotopes: Lithium $_{6}=5.92 \%$, Lithium $_{7}=94.08 \%$

$$
(6 \times 0.0592)+(7 \times 0.9408)=6.941
$$

RELATIVE MOLECULAR MASS (M ${ }_{\mathrm{r}}$)

- The relative molecular mass is the sum of the \mathbb{A}_{r} for the atoms making up a molecule
- The M_{r} of methane $\left(\mathrm{CH}_{4}\right)$ is:
- $12.01\left(\mathrm{~A}_{\mathrm{r}}\right.$ of C$)+4 \times 1.01\left(\mathrm{~A}_{\mathrm{r}}\right.$ of $\left.H\right)=16.05$
- Calculate M_{r} for glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$
- A_{r} of $C=12.01$
- A_{r} of $\mathrm{H}=1.01$
- A_{r} of $O=15.99$

USING MOLES, MASS AND MOLAR MASS

- Calculate the number of moles for 116.422 g of glucose
$116.422 / 180.156=0.646$ moles
- Carbon $6 \times 12.011 \mathrm{~g} / \mathrm{mol}=72.066$
- Hydrogen $12 \times 1.008 \mathrm{~g} / \mathrm{mol}=12.096$
- Oxygen $6 \times 15.999 \mathrm{~g} / \mathrm{mol}=95.994$ 180.156

Video explaining the relationship between Avogadro's number, mass in grams and relative masses (molar mass)

https://www.youtube.com/watch?v=M5q YMN4CtY

4 min video

Molecular Mass

$12.01+16+16=48.01$

If there are 6.02×10^{23} molecules of CO_{2} then there is 1 mole of CO_{2} 1 mole of CO_{2} has a mass of 48.01 grams

EMPIRICAL FORMULAS

An empirical formula is the simplest whole number ratio of the elements present in a compound

- Example CH_{2} - this ratio tells us that for every carbon atom there are 2 hydrogen atoms
- An empirical formula can be calculated based on the \% mass of each element present in a compound.

The $\%$ by mass of an element $=\left(\frac{\text { number of atoms of the element } \times \mathcal{A}_{\mathrm{r}}}{}\right) \times 100$

$$
\mathrm{M}_{\mathrm{r}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}=123.10
$$

$$
\begin{array}{llll}
A_{\mathrm{r}} \mathrm{C}=12.01 & \mathrm{~A}_{\mathrm{r}} \mathrm{O}=15.99 & \mathrm{C}=58.54 \% & \mathrm{O}=25.98 \% \\
\mathrm{~A}_{\mathrm{r}} \mathrm{H}=1.01 & \mathrm{~A}_{\mathrm{r}} \mathrm{~N}=14.01 & \mathrm{H}=4.10 \% & \mathrm{~N}=11.38 \%
\end{array}
$$

An unknown sample has been analysed and found to contain 47% potassium, 14.5% carbon and 38.5% oxygen. What is its empirical formula?

Step 1 - convert to g

- If you have been asked to calculate an empirical formula based on $\%$ composition, then you assume that the mass is 100 g . This way $1 \%=1 \mathrm{~g}$.

$$
\begin{array}{llll}
\mathrm{K}=47.00 \% & =47.0 \mathrm{~g} \\
\mathrm{C}=14.50 \% & =14.5 \mathrm{~g} & \mathrm{~A}_{\mathrm{r}} \mathrm{~K}=39.09 & \mathrm{~A}_{\mathrm{r}} \mathrm{C}=12.01
\end{array} \quad \mathrm{~A}_{\mathrm{r}} \mathrm{O}=16
$$

$$
\mathrm{O}=38.50 \%=38.5 \mathrm{~g}
$$

Step 2 - convert to moles
Number of moles $=$ mass of substance $(\mathrm{g}) / \bar{A}_{\mathrm{r}}$

$$
\mathrm{K}=47.0 / 39.09=1.20 \text { moles }
$$

$$
\mathrm{C}=14.5 / 12.01=1.21 \mathrm{moles}
$$

$$
\mathrm{O}=38.5 / 16.00=2.41 \mathrm{moles}
$$

Step 3 - Divide each value by the smallest, and round to a whole number

$$
\begin{aligned}
& \mathrm{K}=1 \cdot 20 / 1 \cdot 20=1 \\
& \mathrm{C}=1.21 / 1 \cdot 20=1 \\
& \mathrm{O}=2.41 / 1 \cdot 20=2
\end{aligned}
$$

Empirical formula $=\mathrm{KCO}_{2}$

- A compound was analysed and found to contain $53.4 \% \mathrm{Ca}, 43.8 \% \mathrm{O}$, and 2.8\% H.

What is the empirical formula of the compound?

QStep l- convert to grams
-Step 2 - calculate \# of moles
QStep 3 - divide each value by the smallest and round to a whole number
\square Step 4 - write the empirical formula

$$
A_{r} \mathrm{Ca}=40.1 \quad A_{r} \mathrm{O}=16.00 \quad A_{r} \mathrm{H}=1.01
$$

- A compound was analysed and found to contain $57.14 \% \mathrm{C}, 6.16 \% \mathrm{H}, 9.52 \% \mathrm{~N}$ and 27.18% O. What is the empirical formula of the compound?
$\mathrm{C}=57.14 \%=57.14 \mathrm{~g}$
$\mathrm{H}=6.16 \% \quad=6.16 \mathrm{~g}$
$\mathrm{N}=9.52 \%=9.52 \mathrm{~g}$
$\mathrm{O}=27.18 \%=27.18 \mathrm{~g}$
$\mathrm{C}=57.14 / 12.01=4.76 \mathrm{~mol}$
$H=6.16 / 1.01=6.10 \mathrm{~mol}$
$\mathrm{N}=9.52 \quad / 14.01=0.68 \mathrm{~mol}$
$\mathrm{O}=27.18 / 15.99=1.70 \mathrm{~mol}$
$C=4.76 / 0.68=7$
$\mathrm{H}=6.10 / 0.68=9$
$\mathrm{N}=0.68 / 0.68=1$
$\mathrm{O}=1.70 / 0.68=2.5 \mathrm{Too}$ far to round.

Multiply each by the lowest factor that gives a whole number
$C=4.76 / 0.68=7 \times 2=14$
$\mathrm{H}=6.10 / 0.68=9 \times 2=18$
$\mathrm{N}=0.68 / 0.68=1 \times 2=2$
$\mathrm{O}=1.70 / 0.68=2.5 \times 2=5$

Empirical Formula $=\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$

MOLECULAR FORMULAS

- A molecular formula is the total number of atoms of each element present in a molecule of the compound.
- It is a multiple of the empirical formula (simplest whole number ratio).

Substance	Molecular Formula	Empirical Formula
Benzene $78.12 \mathrm{~g} / \mathrm{mol}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	CH
Acetylene $26.04 \mathrm{~g} / \mathrm{mol}$	$\mathrm{C}_{2} \mathrm{H}_{2}$	CH
Glucose $180.156 \mathrm{~g} / \mathrm{mol}$	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	$\mathrm{CH}_{2} \mathrm{O}$
Water $18.01 \mathrm{~g} / \mathrm{mol}$	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{O}$

To calculate the molecular formula from an empirical formula you need the M_{r} and the empirical formula mass.

Example: The empirical formula of benzene is CH; the molar mass is $78.12 \mathrm{~g} \mathrm{~mol}^{-1}$. What is the molecular formula?

Mass of empirical formula unit $=(12.01+1.01)=13.02$

$$
\mathrm{N}=78.12 / 13.02=6
$$

The empirical formula unit occurs 6 times (n) Therefore, the molecular formula $=\mathrm{C}_{6} \mathrm{H}_{6}$

COMBUSTION REACTIONS

- A 0.250 g sample of hydrocarbon undergoes complete combustion to produce 0.845 g of CO_{2} and 0.173 g of $\mathrm{H}_{2} \mathrm{O}$. What is the empirical formula of this compound?

Step 1 - Determine the grams of C in $0.845 \mathrm{~g} \mathrm{CO}_{2}$ and the grams of H in $0.173 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$.

- carbon: $0.845 \mathrm{~g} \mathrm{x}(12.01 / 43.99)=0.2307 \mathrm{~g}$
- hydrogen: $0.173 \mathrm{gx}(2.02 / 18.01)=0.0194 \mathrm{~g}$

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{r}} \mathrm{CO}_{2}=43.99 \\
& \mathrm{M}_{\mathrm{r}} \mathrm{H}_{2} \mathrm{O}=18.01
\end{aligned}
$$

Step 2 - Convert grams of C and H to their respective amount of moles.

- carbon: $0.2307 / 12.011=0.0192 \mathrm{~mol}$
- hydrogen: $0.0194 / 1.01=0.0192 \mathrm{~mol}$
Empirical formula = CH
- A 0.250 g sample of a compound known to contain carbon, hydrogen and oxygen undergoes complete combustion to produce 0.3664 g of CO_{2} and 0.150 g of $\mathrm{H}_{2} \mathrm{O}$. What is the empirical formula of this compound?

Step 1 - Determine the grams of carbon in $0.3664 \mathrm{~g} \mathrm{CO}_{2}$ and the grams of hydrogen in $0.1500 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ carbon: $0.3664 \times(12.01 / 43.99)=0.1000 \mathrm{~g}$ hydrogen: $0.15 \times(2.02 / 18.01)=0.0168 \mathrm{~g}$

Grams of oxygen $=0.25-(0.1+0.0168)=0.1332$

Step 2 - Convert grams to moles carbon: $0.1000 / 12.01=0.0083 \mathrm{~mol}$ hydrogen: $0.0168 / 1.01=0.0166 \mathrm{~mol}$ oxygen $=0.1332 / 15.99=0.0083 \mathrm{~mol}$

Step 3 - Divide by the lowest value carbon: $0.0083 / 0.0083=1$ hydrogen: $0.0166 / 0.0083=2$ oxygen: $0.0083 / 0.0083=1$

Empirical Formula $=\mathrm{CH}_{2} \mathrm{O}$

PRACTICE PROBLEMS

A hydrocarbon fuel is fully combusted with 18.214 g of oxygen to yield 23.118 g of CO_{2} and 4.729 g of $\mathrm{H}_{2} \mathrm{O}$. Find the empirical formula for the hydrocarbon.
12.915 g of a substance containing only carbon, hydrogen, and oxygen was combusted to yield $18.942 \mathrm{~g} \mathrm{CO}_{2}$ and $7.749 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$. Determine the empirical formula of the substance.

IONIC EQUATIONS

- Just like mass, charge is conserved in a reaction
- Although an equation can be balanced with regards to the number of atoms it may be unbalanced with regards to charge.

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{Fe}^{2+}+\mathrm{H}^{+} \longrightarrow \mathrm{Cr}^{3+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Fe}^{3+}
$$

- Balance the number of atoms, then balance the total charge of the products and reactants
- Balance all atoms except H and O , add $\mathrm{H}_{2} \mathrm{O}$ to the side deficient in O , add H^{+} to balance H
- State symbols are often included in chemical equations
- $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
(l) $=$ liquid
- $\mathrm{CO}_{2(\mathrm{~g})}$
$(g)=$ gas
- $\mathrm{MgCl}_{(\mathrm{S})}$
$(\mathrm{s})=$ solid
- $\mathrm{HCl}_{(\mathrm{aq})}$
(aq) $=$ aqueous (dissolved in water)

Total and Net ionic equations

Aqueous sodium hydroxide reacts with aqueous copper(II) sulphate to precipitate copper(II) hydroxide

$$
2 \mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{CuSO}_{2(\mathrm{aq})} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{2(\mathrm{aq})}+\mathrm{Cu}(\mathrm{OH})_{2(\mathrm{~s})}
$$

To write a total ionic equation we have to break up aqueous solutions into constituent ions

$$
2 \mathrm{Na}^{+}+2 \mathrm{OH}^{-}+\mathrm{Cu}^{2+}+\mathrm{SO}_{2}^{2-} \longrightarrow 2 \mathrm{Na}^{+}+\mathrm{SO}_{2}^{2-}+\mathrm{Cu}(\mathrm{OH})_{2(\mathrm{~s})}
$$

To write a net ionic equation we remove the spectator ions from the equation

$$
\mathrm{Cu}^{2+}+2 \mathrm{OH}^{-} \longrightarrow \mathrm{Cu}(\mathrm{OH})_{2(\mathrm{~s})}
$$

Name	Ion	Name	Ion
Hydride	H^{+}	Nitrate	$\mathrm{NO}_{3}{ }^{-}$
Hydroxide	OH^{-}	Phosphate	$\mathrm{PO}_{4}{ }^{3-}$
Carbonate	$\mathrm{CO}_{3}{ }^{2-}$	Ammonium	$\mathrm{NH}_{4}{ }^{+}$
Sulphite	$\mathrm{SO}_{3}{ }^{2-}$	Oxalate	$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
Sulphate	$\mathrm{SO}_{4}{ }^{2-}$	Permanganate	$\mathrm{MnO}_{4}{ }^{-}$

In order to break apart aqueous solutions into constituent ions, it helps to be familiar with the charges of common ions.

Alkali Metals (Group 1): +1 ions $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}$

Alkali Earth Metals (Group 2): +2 ions $\mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Rb}^{2+}$

Periodic Table knowledge

Halogens (Group 7): -1 ions
$\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}$,

PRACTICE PROBLEMS

$$
\mathrm{K}_{2} \mathrm{CO}_{3(\mathrm{aq})}+2 \mathrm{AgNO}_{3(\mathrm{aq})} \longrightarrow 2 \mathrm{KNO}_{3(\mathrm{aq})}+\mathrm{Ag}_{2} \mathrm{CO}_{3(\mathrm{~s})}
$$

$$
\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{NaOH}_{(\mathrm{aq})} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

$3 \mathrm{HCl}_{(\mathrm{aq})}+\mathrm{Al}(\mathrm{OH})_{3(\mathrm{aq})} \longrightarrow 3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{AlCl}_{3(\mathrm{aq})}$
$2 \mathrm{Na}_{3} \mathrm{PO}_{4(\mathrm{aq})}+3 \mathrm{CaCl}_{2(\mathrm{aq})} \longrightarrow 6 \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})}$

CALCULATIONS USING CHEMICAL EQUATIONS

- Chemists need to be able to calculate the mass of each reactant required to produce a certain amount of a product.
- Example: $4 \mathrm{Na}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{Na}_{2} \mathrm{O}_{(\mathrm{s})}$

$$
\text { Na: } 22.99
$$

$\mathrm{O}_{2}: 32.00$
$\mathrm{Na}_{2} \mathrm{O}: 61.98$

- How much sodium reacts with 3.20 g of O_{2} ? What mass of $\mathrm{Na}_{2} \mathrm{O}_{(\mathrm{s})}$ is produced?

$$
\begin{array}{r}
2 \mathrm{NH}_{3}+3 \mathrm{CuO} \longrightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Cu} \\
17.04 \mathrm{~g} / \mathrm{mol} \\
63.55 \mathrm{~g} / \mathrm{mol}
\end{array}
$$

If 2.56 g of NH_{3} is reacted with excess CuO , calculate the mass of Cu produced

- An alternative method for solving these types of problems

$$
\frac{m_{1}}{n_{1} M_{1}}=\frac{m_{2}}{n_{2} M_{2}} \quad \begin{aligned}
& m_{1}=\text { mass of first substance }(\mathrm{g}) \\
& n_{1}=\text { coefficient of first substance } \\
& M_{1}=\text { molar mass of first substance }
\end{aligned}
$$

$$
2 \mathrm{C}_{4} \mathrm{H}_{10(\mathrm{~g})}+13 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 8 \mathrm{CO}_{2(\mathrm{~g})}+10 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

$58.14 \quad 32$
44.01
18.02

If 10.00 g of butane is used, calculate:

- The moles of oxygen required
- The mass of CO_{2} produced

PRACTICE PROBLEMS

1) How many moles of hydrogen gas are produced when 0.4 moles of sodium react with excess water?

$$
\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \quad \longrightarrow \quad \mathrm{NaOH}+\quad \mathrm{H}_{2}
$$

Na: 22.99
H_{2} : 2.02
$\mathrm{H}_{2} \mathrm{O}: 18.02$
$\mathrm{O}_{2}: 32.00$
$\mathrm{C}_{3} \mathrm{H}_{8}: 44.11$
2) How many moles of O_{2} react with $0.01 \mathrm{~mol}_{3} \mathrm{H}_{8}$?

$$
\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{O}_{2} \quad \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

3) Calculate the mass of arsenic(III) chloride produced when 0.150 g of arsenic reacts with excess chlorine.
$\mathrm{As}+\mathrm{Cl}_{2} \longrightarrow \mathrm{AsCl}_{3}$
As: 74.92
$\mathrm{Cl}_{2}: 70.91$
$\mathrm{AsCl}_{3}: 181.28$
$\mathrm{SCl}_{2}: 102.97$
$\mathrm{NaCl}: 58.44$
4) What mass of SCl_{2} must be reacted with excess NaF to produce 2.25 g of NaCl ?

$$
\mathrm{SCl}_{2}+\mathrm{NaF} \longrightarrow \mathrm{~S}_{2} \mathrm{Cl}_{2}+\mathrm{SF}_{4}+\mathrm{NaCl}
$$

CALCULATING THE YIELD OF A CHEMICAL REACTION

- It is important to know the yield of a chemical reaction, for instance there may be two possible methods for synthesising a compound.
- Route $1=95 \%$ yield Route $2=88 \%$ yield
- Yield is usually quoted as a percentage
$\frac{\text { Actual Yield }}{\text { Theoretical Yield }} \quad \mathrm{X} 100=\%$ Yield

The theoretical yield will be calculated using coefficient ratios and masses/moles

- If the yield of ethyl ethanoate obtained, when 20.0 g of ethanol is reacted with excess ethanoic acid, is 30.27 g . Calculate the \% yield.

$$
\begin{array}{cc}
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{l})}
\end{array}+\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{l})} \longrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(\mathrm{l})}+\mathrm{H}_{2} \mathrm{O}
$$

$\frac{\text { Actual Yield }}{\text { Theoretical Yield }} \quad \mathrm{X} 100=\%$ Yield

QUIZ

- Empirical and molecular formulas
- Combustion analysis
- Ionic equations
- Calculations using mass and moles
- Yield

LIMITING REACTANIS

- In most chemical reactions exact quantities are not used, instead an excess of one or more reagents is used.
- Therefore, one reactant is consumed before the others and is called the limiting reactant (also known as the limiting reagent)

Determine the limiting reagent if you have the following:
14 slice of bread 18 slices of Ham 20 slices of cheese

$$
\underset{26.98 \mathrm{~g} / \mathrm{mol} 70.9 \mathrm{~g} / \mathrm{mol}}{2 \mathrm{Al}}+3 \mathrm{Cl}_{2 \mathrm{~g})} \longrightarrow 2 \mathrm{AlCl}_{3(\mathrm{~s})}
$$

114 g of Al is reacted with 186 g of Cl_{2}. Which is the limiting reactant?
Step 1 - Find moles
$\mathrm{Al}=114 / 26.98=4.23$ moles
$\mathrm{Cl}_{2}=186 / 70.9=2.62$ moles
Step 2 -
To use all Al we need $4.23 \times \frac{3}{2}=6.35 \mathrm{~mol} \mathrm{Cl}_{2}$
To use all Cl_{2} we need $2.62 \times \frac{2}{3}=1.75 \mathrm{~mol} . \mathrm{Al}$
We have enough Al to use all the Cl_{2}. = Excess
We don't have enough Cl_{2} to use all the Al . = Limiting Reagent

Identify the limiting reactant in each of the following reactions:

$0.20 \mathrm{~mol} \mathrm{AsCl}_{3}$ reacts with $0.25 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

$\mathrm{AsCl}_{3}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{As}_{4} \mathrm{O}_{6}+\mathrm{HCl}$
$181.28 \quad 18.02$
2.3 kg of S_{8} is reacted with 3.2 kg of O_{2}

$$
\underset{\substack{\mathrm{S}_{8} \\
256.52 \mathrm{~g} / \mathrm{mol}}}{+\underset{2}{12 \mathrm{O}_{2}}} \longrightarrow \begin{gathered}
32.00 \mathrm{~g} / \mathrm{mol}
\end{gathered} \quad 8 \mathrm{SO}_{3}
$$

- Determine the limiting reagents in each of the following reactions:

IDEAL GASES

- Gases are complicated. They're full of billions and billions of energetic gas molecules that can collide and possibly interact with each other.
- Since it's hard to exactly describe a real gas, people created the concept of an Ideal gas as an approximation that helps us model and predict the behaviour of real gases.
- The term ideal gas refers to a hypothetical gas composed of molecules which follow these rules:

Ideal gas molecules do not attract or repel each other. The only interaction between ideal gas molecules would be an elastic collision upon impact with each other or an elastic collision with the walls of the container.

Ideal gas molecules themselves take up no volume. The gas takes up volume since the molecules expand into a large region of space, but the Ideal gas molecules are approximated as point particles that have no volume in and of themselves.

A collision wherein no kinetic energy is converted to other forms of energy during the collision. In other words, kinetic energy can be exchanged between the colliding objects (e.g. molecules), but the total kinetic energy before the collision is equal to the total kinetic energy after the collision

- There are no gases that are exactly ideal, but there are plenty of gases that are close enough that the concept of an ideal gas is an extremely useful approximation for many situations.
- In fact, for temperatures near room temperature and pressures near atmospheric pressure, many of the gases we care about are very nearly ideal.
- If the pressure of the gas is too large (e.g. hundreds of times larger than atmospheric pressure), or the temperature is too low (e.g. $-200^{\circ} \mathrm{C}$) there can be significant deviations from the ideal gas law.

CALCULATIONS INVOLVING GASES

Standard temperature and pressure (STP) $=0^{\circ} \mathrm{C}(273 \mathrm{k}), 1 \mathrm{~atm}(100 \mathrm{kPa})$
The volume of a gas at STP is constant : 1 mole $=22.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$

Avogadros Law

Volumes of gases are often given in dm^{3} (litres) or cm^{3}

$$
1 \mathrm{dm}^{3}=1000 \mathrm{~cm}^{3}
$$

Calculate the mass of $250 \mathrm{~cm}^{3}$ of O_{2} at STP

$$
\begin{gathered}
250 \mathrm{~cm}^{3}=0.25 \mathrm{dm}^{3} \\
0.25 / 22.4=0.0112 \mathrm{~mol} \\
0.0112 \times 32=0.36 \mathrm{~g}
\end{gathered}
$$

$$
\begin{array}{rr}
2 \mathrm{KClO}_{3(\mathrm{~s})} & \longrightarrow 2 \mathrm{KCl}_{(\mathrm{s})}+3 \mathrm{O}_{2(\mathrm{~g})} \\
122.55 \mathrm{~g} / \mathrm{mol}
\end{array}
$$

What mass of KClO_{3} decomposes to produce $100 \mathrm{~cm}^{3}$ of O_{2} at STP?

ALTERNATIVE FORMULAS

$$
\frac{\mathrm{m}_{1}}{\mathrm{n}_{1} \mathbf{M}_{1}}=\frac{\mathbf{V}_{2}}{\mathrm{n}_{2} \mathbf{M}_{\mathrm{v}}} \quad \begin{aligned}
& \mathrm{m}_{1}=\text { mass of first substance }(\mathrm{g}) \\
& \mathrm{n}_{1}=\text { coefficient of first substance } \\
& M_{1}=\text { molar mass of first substance } \\
& V_{2}=\text { volume of second substance if it is a gas (dm³) } \\
& \mathrm{n}_{2}=\text { coefficient of second substance } \\
& \mathrm{M}_{\mathrm{v}}=\text { molar volume of a gas (22.4dm }{ }^{3} \text { at STP) }
\end{aligned}
$$

When a mass is given and the volume of another substance is required

$$
\begin{aligned}
& 2 \mathrm{As}_{2} \mathrm{~S}_{3(\mathrm{~s})}+9 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{As}_{2} \mathrm{O}_{3(\mathrm{~s})}+6 \mathrm{SO}_{2(\mathrm{~g})} \\
& 246.02 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

What volume of SO_{2} (measured at STP) is obtained when 1 kg of $A \mathrm{~S}_{2} \mathrm{~S}_{3}$ is combusted?

$$
\begin{array}{ll}
\text { Substance } 1=A_{s_{2}} S_{3} & \text { Substance } 2=\mathrm{SO}_{2} \\
\mathrm{~m}_{1}= & \frac{\mathrm{m}_{1}}{\mathrm{n}_{1} \mathrm{M}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{n}_{2} M_{\mathrm{v}}} \\
\mathrm{n}_{1}= & \mathrm{n}_{2}= \\
\mathrm{M}_{1}= & \mathrm{M}_{\mathrm{v}}=
\end{array}
$$

$$
4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

Calculate the volume of $\mathrm{NO}_{(\mathrm{g})}$ and $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ produced when $0.6 \mathrm{dm}^{3}$ of $\mathrm{O}_{2(\mathrm{~g})}$ N: 14.01 is reacted with excess ammonia.

MACROSCOPIC PROPERTIES OF IDEAL GASES

Macroscopic means 'on a large scale'

- Microscopic properties of gases are the properties of the particles that make up the gas
- So far we have dealt with questions involving the volumes of gases at STP. In order to work out volumes of gases under other conditions, we must understand a little about the properties of gases.

BOYLE'S LAW

The relationship between pressure and volume

At a constant temperature, the volume of a fixed mass of an ideal gas is inversely proportional to its pressure

- Example - if the pressure of a gas is doubled at constant temperature, then the volume will be halved and vice versa (double volume = halve

$$
P_{1} V_{1}=P_{2} V_{2}
$$

 the pressure)

CHARLES' LLAW
 $\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$

The relationship between volume and temperature

The volume of a fixed mass of an ideal gas at constant pressure is directly proportional to its temperature in kelvin.

- Example - If an ideal gas has a volume of $200 \mathrm{~cm}^{3}$ at 120 K , it will have a volume of $400 \mathrm{~cm}^{3}$
 at 240 K if the pressure remains constant

GAY-LUSSAC'S LAW

$$
\frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}}
$$

The relationship between pressure and

For a fixed mass of an ideal gas at constant volume, the pressure is directly proportional to its absolute temperature (K).

- Example - If the temperature (in Kelvin) of a
 fixed volume of an ideal gas is doubled, the pressure will also double
- Which gas law requires constant volume?
a) Boyle's Law
- Which gas law states that at a constant temperature, the volume of a fixed mass of an ideal gas is inversely proportional to its pressure?
a) Boyle's Law
b) Charles' law
c) Gay-Lussac's law
- Which gas law requires constant temperature?
(a) Boyle's Law
b) Charles' law
c) Gay-Lussac's law
- Which gas law requires constant pressure?
a) Boyle's Law
(b) Charles' law
c) Gay-Lussac's law
a) Boyle's Law
b) Charles' law
(c) Gay-Lussac's law
- Which gas law states that the volume of a fixed mass of an ideal gas at constant pressure is directly proportional to its temperature in kelvin?
a) Boyle's Law
(b) Charles' law
c) Gay-Lussac's law

COMBINED GAS LAW

Boyle's law, Charles' law and Gay-Lussac's law can be combined to produce the following equation:

COMBINED GAS LAW

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

Temperature must be in Kelvin

Any units may be used for P and V , as long as they are the same on both sides
$1 \mathrm{~atm}=101.32 \mathrm{kPa}=760 \mathrm{mmHg}$
$=1.013$ bar $=14.7 \mathrm{PSI}$

```
!!!!!!!!!!!!
30}\mp@subsup{}{}{\circ}\textrm{C}->
30+273.15
=303.15K
```


- Rearranged to solve for each variable:
$\Rightarrow \mathrm{P}_{1}=\left(\mathrm{P}_{2} \mathrm{~V}_{2} \mathrm{~T}_{1}\right) /\left(\mathrm{V}_{1} \mathrm{~T}_{2}\right)$
$>\mathrm{V}_{1}=\left(\mathrm{P}_{2} \mathrm{~V}_{2} \mathrm{~T}_{1}\right) /\left(\mathrm{P}_{1} \mathrm{~T}_{2}\right)$
$\rightarrow \mathrm{T}_{1}=\left(\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}\right) /\left(\mathrm{P}_{2} \mathrm{~V}_{2}\right)$
$>\mathrm{P}_{2}=\left(\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}\right) /\left(\mathrm{V}_{2} \mathrm{~T}_{1}\right)$
$>\mathrm{V}_{2}=\left(\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}\right) /\left(\mathrm{P}_{2} \mathrm{~T}_{1}\right)$
$>\mathrm{T}_{2}=\left(\mathrm{P}_{2} \mathrm{~V}_{2} \mathrm{~T}_{1}\right) /\left(\mathrm{P}_{1} \mathrm{~V}_{1}\right)$

What temperature in ${ }^{\circ} \mathrm{C}$ is required for an ideal gas to occupy $1.34 \mathrm{dm}^{3}$ at a pressure of 2.05 atm if it occupies $756 \mathrm{~cm}^{3}$ at STP?

\[

\]

IDEAL GAS LAAW

1 mole of any gas $=22.4 \mathrm{~L}$ at STP

If the relationship between P, V and T are combined with Avogadro's law the ideal gas equation is obtained.

UNITS

$\mathrm{P}=\mathrm{Pa}$
Volume $=\mathrm{m}^{3}$
$\mathrm{R}=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{T}=\mathrm{K}$
1.0×10^{-5}

Pressure Units				
	$\mathbf{1 ~ a t m}$	$\mathbf{1 ~ m m H g}$	$\mathbf{1 ~ P S I}$	$\mathbf{1 ~ B a r}$
$\mathbf{P a}$	101,325	133.32	6894.76	100,000
$1 \mathrm{~m}^{3}=1000 \mathrm{dm}^{3}=1,000,000 \mathrm{~cm}^{3}$				

What is 800 mmHg in Pa ?
What is 18PSI in Pa?
What is 6atm in Pa ?

An ideal gas occupies $590 \mathrm{~cm}^{3}$ at $120^{\circ} \mathrm{C}$ and 2.00 atm . What amount of gas (in moles) is present?

COMBINED GAS LAAW VS IDEAL GAS LـAW

COMBINED GAS LAW

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

- When should the combined gas law be used?
- The combined gas law is useful when given two pressures, volumes, or temperatures and asked for an unknown pressure, volume, or temperature. A change in conditions
- When should the ideal gas law be used?
- The ideal gas law does not require a change in the conditions of a gas sample. The ideal gas law implies that if you know any three of the physical properties of a gas, you can calculate the fourth property.

PRACTICE QUESTIONS

1) If a certain mass of an ideal gas occupies $20 \mathrm{~cm}^{3}$ at STP, what volume would it occupy at $38^{\circ} \mathrm{C}$ and $1.06 \times 10^{5} \mathrm{~Pa}$?
2) How many moles of an ideal gas are present in a container if it occupies $1.50 \mathrm{dm}^{3}$ at a pressure of 45 PSI and a temperature of $30^{\circ} \mathrm{C}$?
3) Calculate the molar mass of an ideal gas if 0.586 g of the gas occupies a volume of $282 \mathrm{~cm}^{3}$ at a pressure of $1.02 \times 10^{5} \mathrm{~Pa}$ and a temperature of $-18^{\circ} \mathrm{C}$.

CALCULATIONS INVOLVING SOLUTIONS

- A solution is a homogenous mixture; containing a solvent and at least one solute
- Solutions in water are given the symbol (aq); in chemical equations aq = aqueous
- The concentration of a solution is the amount of solute dissolved in a unit volume of solution
- Volume is usually dm ${ }^{3}$
- The amount of solute is usually in grams or moles
- Therefore, units are $\mathrm{g} \mathrm{dm}^{-3}$ or $\mathrm{mol} \mathrm{dm}{ }^{-3}$
- mol dm ${ }^{-3}$ is also known as molarity (M)

Moles can be replaced with mass to calculate concentration in $\mathrm{g} \mathrm{dm}^{-3}$
$\mathrm{n}=$ Number of moles
C = Concentration (M)
$\mathrm{V}=$ Volume (dm^{3})

WORKED EXAMPLES

If 10.00 g of NaOH is dissolved in water and the volume is made up to 200 ml , calculate the concentration in $\mathrm{g} \mathrm{dm}^{-3}$ and $\mathrm{mol} \mathrm{dm}{ }^{-3}$.

Concentration $\left(\mathrm{g} \mathrm{dm}^{-3}\right)$

$$
\mathrm{C}=\frac{\mathrm{M}}{\mathrm{~V}}
$$

Concentration (mol dm ${ }^{-3}$)

$$
C=\frac{n}{v}
$$

Calculate the number of moles of HCl present in $50.0 \mathrm{~cm}^{3}$ of 2.0 M hydrochloric acid

How many grams of NaCl are needed to prepare 1.5 L of a 0.20 M solution?

CONCENTRATION OF IONS

When ionic substances dissolve in water, the substance breaks apart into constituent ions.

$$
\mathrm{CuCl}_{2(\mathrm{aq})} \rightarrow \mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{Cl}_{(\mathrm{aq})}
$$

Therefore when $0.100 \mathrm{~mol} \mathrm{CuCl}_{2}$ dissolves in water, 0.200 mol of Cl^{-}is produced.
\square The [chloride ion], is twice the [CuCl_{2}]
Calculate [OH^{-}], when 0.500 moles of $\mathrm{Al}(\mathrm{OH})_{3}$ is dissolved in 300 ml of water.

$$
\mathrm{Al}(\mathrm{OH})_{3_{(a q)}} \rightarrow \mathrm{Al}^{3+}{ }_{(\mathrm{aqq})}+3 \mathrm{OH}_{(\mathrm{aq})}
$$

TTTRATIONS

- A titration is a technique where a solution of known concentration is used to determine the concentration of an unknown solution.
- Typically, the titrant (the known solution) is added from a burette to a known quantity of the analyte (the unknown solution) until the reaction is complete.
- The unknown solution is often dispensed using a pipette
- Often, an indicator is used to signal the end of the reaction, the endpoint.

A - Analyte is dispensed into a conical flask using a pipette
B - An indicator is added
$\mathrm{C}-\mathbb{A}$ titrant is added from a burette until the end point is reached.
D - The volume of the titrant (known concentration) required to reach the end point is used to determine the concentration of the analyte

- A common titration is an acid-base titration

NEUTRALISATION

$$
\text { Excess } \mathrm{H}^{+} \quad\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right] \quad \text { Excess } \mathrm{OH}^{-}
$$

TITRATION CALCULATIONS

$$
\begin{aligned}
& 2 \mathrm{NaOH}_{(\mathrm{aq)}}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq)}} \\
& \underset{25.2 \mathrm{ml}}{2.200 \mathrm{M}} \\
& \text { Titrant } \\
& \text { Analyte }
\end{aligned} \mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Calculate the concentration of the sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$.

$$
\begin{array}{cc}
\frac{C_{1} \times V_{1}}{n_{1}}=\frac{C_{2} \times V_{2}}{n_{2}} \\
c=\text { concentration } \quad v=\text { volume } n=\text { coefficient }
\end{array}
$$

- 1) If it takes 54 ml of $0.1 \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2}$ to neutralise 125 ml of a HCl solution, what is the concentration of the HCl?
- 2) If it takes 250 ml 1.2 M HCl to neutralise 1.0 L of an $\mathrm{Al}(\mathrm{OH})_{3}$ solution, what is the concentration of the $\mathrm{Al}(\mathrm{OH})_{3}$ solution?
- 3) If it takes 50 ml of 0.5 M KOH solution to completely neutralise 125 ml of sulfuric acid solution $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$, what is the concentration of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution?

BACK TITRATION

- A technique by which a known excess of a particular reagent (\mathbb{A}) is added to a substance (X), so that they react, and then the excess \mathbb{A} is titrated against another reagent.
- This enables us to work out how much of reagent \mathbb{A} reacted with substance X and therefore how many moles of X were present.
- This technique is useful when X is an impure substance.

Measure the mass of an impure substance containing sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$

The crushed tablet is added to 100 ml of 0.1 M hydrochloric acid

$$
\mathrm{NaHCO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

The sodium bicarbonate neutralises some of the HCl. Now we have an unknown concentration of HCl

Unknown concentration of HCl

The volume of NaOH needed to neutralise the HCl is used to determine the concentration of the HCl solution.

0.2 g tablet containing NaHCO_{3}

Added to 100 ml 0.1 M HCl
$0.1 \times \frac{100}{1000}=0.01$ moles

17 ml 0.5 M NaOH

$0.5 \times \frac{17}{1000}=0.0085$ moles

Indicator added

Moles HCl - Moles $\mathrm{NaOH}=$ moles of HCl neutralised by NaHCO_{3} $\begin{array}{lll}0.01 & 0.0085 & 0.0015\end{array}$
$\mathrm{NaHCO}_{3}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
1:1
0.0015 moles NaHCO_{3} (As HCl and NaHCO_{3} react in a l:1 ratio)

Moles $\mathrm{NaHCO}_{3} \times$ Molar mass $\mathrm{NaHCO}_{3}=$ grams of NaHCO_{3}
0.0015
84.007
0.126

If 0.126 g of the 0.2 g tablet is $\mathrm{NaHCO}_{3} ;$ percentage purity $=63 \%$

150 ml of 0.2105 M nitric acid $\left(\mathrm{HNO}_{3}\right)$ was added to 1.3415 g of impure CaCO_{3} $(100.09 \mathrm{~g} / \mathrm{mol})$. The excess acid was back titrated with 0.1055 M NaOH , it required 75.5 ml to reach the end point. Calculate the $\%$ mass of CaCO_{3} in the sample.
$\mathrm{CaCO}_{3}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ $\mathrm{HNO}_{3}+\mathrm{NaOH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NaNO}_{3}$
4.06 g of impure magnesium oxide (MgO , molar mass $=40.30$) was completely dissolved in 100 ml of 2.0 M HCl (in excess). The excess acid required 19.7 ml of 0.20 M NaOH for neutralisation. Calculate the \% purity of the magnesium oxide.

$$
\mathrm{MgO}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

A 1.435g sample of dry CaCO_{3} and CaCl_{2} mixture was dissolved in 25.00 ml of 0.9892 M HCl . What was the CaCl_{2} percentage in original sample, if 21.48 ml of 0.09312 M NaOH was used to titrate excess HCl ?
(molar mass of $\mathrm{CaCO}_{3}=100.09$, molar mass of $\mathrm{CaCl}_{2}=110.98$)
$\mathrm{CaCO}_{3}+\mathrm{CaCl}_{2}+2 \mathrm{HCl} \rightarrow 2 \mathrm{CaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ The CaCl_{2} does not react

Difficult Problem

A 2.75g sample of dolomite containing CaCO_{3} and MgCO_{3} is dissolved in 80 ml of 1.0 M HCl . The solution is then diluted to 250 ml . 25 ml of this solution requires 20 ml of 0.1 M NaOH solution for complete neutralisation. Calculate the \% composition of the sample. (molar mass of $\mathrm{CaCO}_{3}=100.09$, molar mass of $\mathrm{MgCO}_{3}=84.31$)
$\mathrm{CaCO}_{3}+\mathrm{MgCO}_{3}+4 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{MgCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2}$
2.64 g of an unknown carbonate $\left(\mathrm{MCO}_{3}\right)$ was added to 50 ml of 2 M HCl . The solution was then made up to 250 ml . A 25 ml aliquot was neutralised by 37.15 ml of 0.1 M NaOH . (molar mass of $\mathrm{CO}_{3}=60$)

$$
\begin{aligned}
& \mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\
& \mathrm{MCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{MCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
\end{aligned}
$$

What is the unknown metal in the carbonate?

The following website contains worked examples of different types of back titration calculations:
https://wwww.ibchem.com/IB 16/03.55.htm

L_AB

- In groups (up to 5) you will complete a back titration before completing the analysis using the mathematical concepts shown on the previous slides.
- This lab will be assessed and will count towards your collective score
- The calculations and analysis questions must be written up and submitted.
- Accuracy is important. Your results will influence the calculated mass of CaCO_{3}

