1. 3.55 g of impure magnesium oxide $(\mathrm{MgO}$, molar mass $=40.30)$ was completely dissolved in 80 ml of 1.6 M HCl (in excess). The excess acid required 15.8 ml of 0.20 M NaOH for neutralisation. Calculate the $\%$ purity of the magnesium oxide.
```
HCl}+\textrm{NaOH}->\textrm{NaCl}+\mp@subsup{\textrm{H}}{2}{}\textrm{O
MgO}+2\textrm{HCl}->\mp@subsup{\textrm{MgCl}}{2}{}+\mp@subsup{\textrm{H}}{2}{}\textrm{O
```

2. 195 ml of 0.30 M nitric acid $\left(\mathrm{HNO}_{3}\right)$ was added to 3.142 g of impure $\mathrm{CaCO}_{3}(100.09 \mathrm{~g} / \mathrm{mol})$. The excess acid was back titrated with 0.15 M NaOH , it required 98.2 ml to reach the end point. Calculate the percentage mass of CaCO_{3} in the sample.
$\mathrm{HNO}_{3}+\mathrm{NaOH} \rightarrow \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CaCO}_{3}+2 \mathrm{HNO}_{3} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
3. A 6.64 g sample of dolomite, containing CaCO_{3} and MgCO_{3}, is dissolved in 100 ml of 3 M HCl solution. 20 ml of this solution requires 24 ml of 1.3 M NaOH solution for complete neutralisation. Calculate the \% composition of the sample.
(molar mass of $\mathrm{CaCO}_{3}=100.09$, molar mass of $\mathrm{MgCO}_{3}=84.31$)
$\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{MgCO}_{3}+\mathrm{CaCO}_{3}+\ldots \quad \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{MgCl}_{2}+2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
4. An impure sample of $4.00 \mathrm{~g} \mathrm{CaCO}_{3}$ was dissolved in 80 ml of 3 M HCl solution. What was the CaCO_{3} percentage in the original sample, if 80.3 ml of $0.7 \mathrm{M} \mathrm{Al}(\mathrm{OH})_{3}$ was used to titrate excess HCl ? (molar mass of $\mathrm{CaCO}_{3}=100.09$)
