Back Titrations Practice

1.	3.55g of impure magnesium oxide (MgO, molar mass = 40.30) was completely dissolved in
	80ml of 1.6M HCl (in excess). The excess acid required 15.8ml of 0.20M NaOH for
	neutralisation. Calculate the % purity of the magnesium oxide.

$$HCI + NaOH \rightarrow NaCI + H_2O$$

 $MgO + 2HCI \rightarrow MgCl_2 + H_2O$

2. 195ml of 0.30M nitric acid (HNO₃) was added to 3.142g of impure CaCO₃ (100.09g/mol). The excess acid was back titrated with 0.15M NaOH, it required 98.2ml to reach the end point. Calculate the percentage mass of CaCO₃ in the sample.

$$HNO_3 + NaOH \rightarrow NaNO_3 + H_2O$$
 $CaCO_3 + 2HNO_3 \rightarrow Ca(NO_3)_2 + CO_2 + H_2O$

3. A 6.64g sample of dolomite, containing $CaCO_3$ and $MgCO_3$, is dissolved in 100ml of 3M HCl solution. 20ml of this solution requires 24ml of 1.3M NaOH solution for complete neutralisation. Calculate the % composition of the sample. (molar mass of $CaCO_3 = 100.09$, molar mass of $CaCO_3 = 84.31$)

$$HCl + NaOH \rightarrow NaCl + H_2O$$

 $MgCO_3 + CaCO_3 + \underline{\hspace{1cm}} HCl \rightarrow CaCl_2 + MgCl_2 + 2CO_2 + 2H_2O$

4. An impure sample of $4.00g \, CaCO_3 \, was$ dissolved in 80ml of 3M HCl solution. What was the $CaCO_3 \, percentage$ in the original sample, if 80.3ml of $0.7M \, Al(OH)_3 \, was$ used to titrate excess HCl? (molar mass of $CaCO_3 = 100.09$)