Mixtures, Solubility and Acid/Base Solutions

Lesson 1 – Properties of Solutions

Mixtures and Solutions

- Recall that a solution is a type of mixture.
 - Which type of mixture? Homogeneous
- What makes up a mixture?
 Two or more substances
- What makes up a solution? A solvent and at least one solute
- How are solvents and solutes different?
 A solvent is the substance you have the most of. A solute dissolves in the solvent

Types of Solutions

- Do you think a solution is always a liquid?
 A solution can exist in all 3 states of matter
- What determines whether a solution is a solid, liquid or gas? The state of the solvent
- Why does the solvent determine the state of the solution? Because the solvent exists in the greatest quantity

Types of Solutions

70% Copper 30% Zinc

40% Carrot juice 30% Orange juice 20% Pineapple juice 7% Sugar 3% Water

95% Methane 3.2 % Ethane 0.2% Propane 0.03% Butane

Water as a Solvent

- Nearly all water on Earth contains dissolved solutes.
- But not everything can dissolve in water.

Why do you think some substances do not dissolve in water?

Polarity

- Water is a compound containing two hydrogen atoms and an oxygen atom.
- They are bonded together with covalent bonds.
- This means that the atoms are sharing electrons.

low

 Although electrons are shared in covalent bonds they are not always shared equally.

ELECTRONEGATIVITY

medium

high

Electronegativity

When atoms covalently bond they share electrons

Two atoms with equal electronegativity will result in the equal sharing

Fluorine is the most electronegative atom (strongest pull on bonding electrons).

Polarity

- Oxygen is more electronegative than hydrogen.
- How will this affect the charges within the molecule?
 Partial negative charge

 $\delta = \text{slight/partial}$

Determine whether these molecules are polar, nonpolar or ionic

0 – 0.4 = Nonpolar

>2.0 = Ionic

Exception: If the Δ EN is between 1.6 and 2.0 and if a metal is involved, then the bond is considered ionic.

No charges Pa

Partial charges

Full charges

Solubility

- A polar solute dissolves in a polar solvent
- A nonpolar solute dissolves in a nonpolar solvent
- An ionic solute dissolves in a polar solvent

How much can dissolve?

- What would happen if I kept adding salt to water?
- Solubility is the maximum amount of solute that can dissolve in a given amount of solvent at a given temperature and pressure.
- In other words it's a measure of how much solute you can dissolve in a solvent.

Saturated and Unsaturated Solutions

Unsaturated – more solute can dissolve

Saturated – No more solute can dissolve Supersaturated – Becomes unstable. Crystals form

Effect of Temperature

- Solubility changes with temperature
- For many solid solutes solubility increases with temperature. E.g. You can dissolve more sugar in hot water than you can in cold water.
- The solubility of a gas in a liquid decreases with temperature. E.g. A fizzy drink goes flat quicker if it is warm.

Concentration

 Concentration is a measure of how much solute is in a solution.

Describing Concentration

- The word dilute is not an accurate way of describing concentration.
- It is better to state the quantity of the solute in the solution. This is done using mass and volume.

Mass per Volume

- When you have a solid solute and a liquid solvent you calculate the concentration using the following equation.
- Concentration (C)= Mass of solute (M)

Volume of solution (V)

If I dissolve 5 grams of salt in 200ml of water, what is the concentration of the solution?

Percent by Volume

- If a solution contains only liquids or gases its concentration is stated as a percentage.
- To do this you need to know the volume of both the solvent and the solute, and the units need to match. E.g. Both ml or litres.

Concentration = volume of solute
 volume of solution

Lesson 2 – Acid and Base Solutions

Acids

Would you eat or drink something acidic?

Acids taste sour

Would you eat something alkaline?

What are acids?

- Acids are a substance that produces a hydronium ion when dissolved in water.
- Nearly all acids contain one or more hydrogen atoms.

What are bases?

- A base is a substances that produce hydroxide ions when dissolved in water.
- Some bases contain hydroxide ions (NaOH), others produce them by taking hydrogen atoms away from water.

What is pH

- How do we know if a substance or mixture is acidic or alkaline (basic)? We measure the pH
- What are we measuring when we test the pH of a substance or mixture? The concentration of hydronium ions
- What does the pH mean?

The lower the pH the more acidic, the higher the pH the more alkaline

The pH scale

 When pH is measured it is given a value between 1 and 14.

The pH scale

A pH of 7 means it is neither an acid or a base
 A change in one pH unit means a tenfold

 (x10) change in acidity or basicity.

The pH scale

- To calculate how much more acidic or basic a solution is compared to another we can use the formula 10ⁿ
- n= the difference between the pH values
- Example: How much more acidic is lemon juice than wine?

pH = 2

pH = 4

$$10^{(4-2)} = 100$$

Lemon juice is 100 times more acidic than wine

Measuring pH

- There a 3 different ways that pH can be measured:
- Indicators a compound that changes colour at different pH values
- Testing strips these strips contain an indicator that changes to a different colour depending on the pH
- pH meters the most accurate method. An electronic instrument that uses an electrode sensitive to hydronium ion concentration.

What determines the state of a solution?

- a) The state of the solutes
- b) The state of the solvent
- c) The concentration of solutes
- d) The concentration of the solvent

What is the solvent in the solution?

- a) Propane
- b) Ethane
- c) Methane
- d) Butane

95% Methane 3.2 % Ethane 0.2% Propane 0.03% Butane

What do atoms share in covalent bonds?

- a) Protons
- b) Neutrons
- c) Electrons
- d) All of the above

Which statements are false?

- a) Nonpolar molecules do not have charges
- b) Nonpolar molecules have charges
- c) Polar molecules have charges
- d) Polar molecules do not have charges

What is electronegativity a measure of?

- a) An atoms attraction on a bonding pair of protons
- b) An atoms attraction on a bonding pair of electrons
- c) An atoms attraction on a bonding pair of neutrons

What is solubility?

- a) The maximum amount of solute that can dissolve in a given amount of solvent.
- b) The maximum amount of solvent that can dissolve in a given amount of solute
- A measure of how much solute is dissolved in a solvent
- d) A measure of how much solvent is dissolved in a solute

How are saturated solutions different to unsaturated solutions?

- a) More solute can dissolve in a saturated solution. No more solute can dissolve in an unsaturated solution
- More solute can dissolve in an unsaturated solution. No more solute can dissolve in a saturated solution

How is concentration measured?

a) Using solubility and volumeb) Using solubility and massc) Using mass and volume

What do acids produce when they are dissolved in water?

- a) Hydrogen ions
- b) Hydronium ions
- c) Hydroxide ions

What is pH a measure of?

a) The concentration of hydroxide ions
b) The concentration of hydronium ions
c) The concentration of hydrogen ions

If solution A has a pH of 6 and solution B has a pH of 10, how much more acidic is solution A?

- a) 4 times
- b) 100 times
- c) 1000 times
- d) 10,000 times

What is the most accurate way of measuring pH?

- a) A pH meter
- b) Testing strips
- c) Indicators
- d) Taste