Empirical and molecular formulas:
Nicotine (molar mass $162.23 \mathrm{~g} / \mathrm{mol}$), an alkaloid in the nightshade family of plants that is mainly responsible for the addictive nature of cigarettes, contains $74.02 \% \mathrm{C}, 8.710 \% \mathrm{H}$, and $17.27 \% \mathrm{~N}$.

Determine the empirical and molecular formula for nicotine.

Determine the empirical and molecular formula for chrysotile asbestos. Chrysotile has the following percent composition: $28.03 \% \mathrm{Mg}, 21.60 \% \mathrm{Si}, 1.16 \% \mathrm{H}$, and $49.21 \% \mathrm{O}$. The molar mass for chrysotile is $520.8 \mathrm{~g} / \mathrm{mol}$.

A major textile dye manufacturer developed a new yellow dye. The dye has a percent composition of $75.95 \% \mathrm{C}, 17.72 \% \mathrm{~N}$, and $6.33 \% \mathrm{H}$ by mass with a molar mass of about $240 \mathrm{~g} / \mathrm{mol}$. Determine the molecular formula of the dye.

Combustion Analysis:

Quinone, which is used in the dye industry and in photography, is an organic compound containing only C, H, and O. A 0.105 g sample of the compound gives $0.257 \mathrm{~g}^{\circ}$ of CO_{2} and 0.0350 g of $\mathrm{H}_{2} \mathrm{O}$ when combusted; determine the empirical and molecular formula (molar mass 108g/mol).

A carbohydrate is a compound composed solely of carbon, hydrogen and oxygen. When 10.7695 g of an unknown carbohydrate (Molar mass $128.2080 \mathrm{~g} / \mathrm{mol}$) was subjected to combustion analysis with excess oxygen, it produced $29.5747 \mathrm{~g} \mathrm{CO}_{2}$ and $12.1068 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$. What is its molecular formula?

Balance the following ionic equations:
\qquad $\mathrm{MnO}_{4}{ }^{-}+$ \qquad $\mathrm{H}^{+}+5 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Mn}^{2+}+$ \qquad $\mathrm{H}_{2} \mathrm{O}+$ \qquad O_{2} $\ldots \mathrm{Fe}^{2+}+\ldots \mathrm{MnO}_{4}{ }^{+} \ldots \mathrm{H}^{+} \rightarrow$ __ $\mathrm{Fe}^{3+}+\ldots \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$

Determine the total and net ionic equations:

$$
\mathrm{Na}_{2} \mathrm{~S}_{(\mathrm{aq)}}+2 \mathrm{HCl}_{(\mathrm{aq)}} \rightarrow 2 \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}
$$

Total:

Net:

$$
\mathrm{K}_{3} \mathrm{PO}_{4(\mathrm{aq})}+\mathrm{CaCl}_{2(\mathrm{aq})} \rightarrow \mathrm{KCl}_{(\mathrm{aq})}+\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})}
$$

Total:

Net:

Calculations from balanced equations:
85.4 g of chlorine gas (Cl_{2} molar mass $70.9 \mathrm{~g} / \mathrm{mol}$) reacts with excess P_{4} to produce 104 g of PCl_{3} (molar mass $137.3 \mathrm{~g} / \mathrm{mol}$). Determine the percentage yield.

$$
\ldots \mathrm{Cl}_{2(\mathrm{~g})}+\ldots \mathrm{P}_{4(\mathrm{~s})} \rightarrow \text { __ } \mathrm{PCl}_{3(1)}
$$

If the reaction of 91.3 g of $\mathrm{C}_{3} \mathrm{H}_{6}(42.08 \mathrm{~g} / \mathrm{mol})$ produces an 81.3% yield, how many grams of CO_{2} (molar mass $44.01 \mathrm{~g} / \mathrm{mol}$) would be produced?

$$
\ldots \mathrm{C}_{3} \mathrm{H}_{6}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
$$

If the reaction of 77.0 g of $\mathrm{Ca}(\mathrm{CN})_{2}$ produces 27.1 grams of NH_{3}, what is the percentage yield?
$\mathrm{Ca}(\mathrm{CN})_{2}$ molar mass: $92.11 \mathrm{~g} / \mathrm{mol} \quad \mathrm{NH}_{3}$ molar mass: $17.03 \mathrm{~g} / \mathrm{mol}$
\qquad

